A Species-Specific Cluster of Defensin-Like Genes Encodes Diffusible Pollen Tube Attractants in Arabidopsis
نویسندگان
چکیده
Genes directly involved in male/female and host/parasite interactions are believed to be under positive selection. The flowering plant Arabidopsis thaliana has more than 300 defensin-like (DEFL) genes, which are likely to be involved in both natural immunity and cell-to-cell communication including pollen-pistil interactions. However, little is known of the relationship between the molecular evolution of DEFL genes and their functions. Here, we identified a recently evolved cluster of DEFL genes in A. thaliana and demonstrated that these DEFL (cysteine-rich peptide [CRP810_1]) peptides, named AtLURE1 peptides, are pollen tube attractants guiding pollen tubes to the ovular micropyle. The AtLURE1 genes formed the sole species-specific cluster among DEFL genes compared to its close relative, A. lyrata. No evidence for positive selection was detected in AtLURE1 genes and their orthologs, implying neutral evolution of AtLURE1 genes. AtLURE1 peptides were specifically expressed in egg-accompanying synergid cells and secreted toward the funicular surface through the micropyle. Genetic analyses showed that gametophytic mutants defective in micropylar guidance (myb98, magatama3, and central cell guidance) do not express AtLURE1 peptides. Downregulation of the expression of these peptides impaired precise pollen tube attraction to the micropylar opening of some populations of ovules. Recombinant AtLURE1 peptides attracted A. thaliana pollen tubes at a higher frequency compared to A. lyrata pollen tubes, suggesting that these peptides are species-preferential attractants in micropylar guidance. In support of this idea, the heterologous expression of a single AtLURE1 peptide in the synergid cell of Torenia fournieri was sufficient to guide A. thaliana pollen tubes to the T. fournieri embryo sac and to permit entry into it. Our results suggest the unique evolution of AtLURE1 genes, which are directly involved in male-female interaction among the DEFL multigene family, and furthermore suggest that these peptides are sufficient to overcome interspecific barriers in gametophytic attraction and penetration.
منابع مشابه
Vision and the light environment
How do I find out more? Carlson, A.L., Fitz Gerald, J.N., Telligman, M., Roshanmanesh, J., and Swanson, R.J. (2011). Defining the genetic architecture underlying femaleand male-mediated nonrandom mating and seed yield traits in Arabidopsis. Plant Physiol. 157, 1956–1964. Cheung, A.Y., and Wu., H.-M. (2008). Structural and signaling networks for the polar cell growth machinery in pollen tubes. A...
متن کاملGene families from the Arabidopsis thaliana pollen coat proteome.
The pollen extracellular matrix contains proteins mediating species specificity and components needed for efficient pollination. We identified all proteins >10 kilodaltons in the Arabidopsis pollen coating and showed that most of the corresponding genes reside in two genomic clusters. One cluster encodes six lipases, whereas the other contains six lipid-binding oleosin genes, including GRP17, a...
متن کاملMaize EMBRYO SAC family peptides interact differentially with pollen tubes and fungal cells
EMBRYO SAC1-4 (ES1-4) peptides belong to the defensin subgroup of cysteine-rich peptides known to mediate pollen tube burst in Zea mays (maize). ES1-4 are reported here to also be capable of inhibiting germination and growth of the maize fungal pathogens Fusarium graminearum and Ustilago maydis at higher concentrations. Dividing the peptides into smaller pieces showed that a 15-amino-acid pepti...
متن کاملMIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters.
The genome of Arabidopsis (Arabidopsis thaliana) encodes over 100 MADS-domain transcription factors, categorized into five phylogenetic subgroups. Most research efforts have focused on just one of these subgroups (MIKC(c)), whereas the other four remain largely unexplored. Here, we report on five members of the so-called Mdelta or Arabidopsis MIKC* (AtMIKC*) subgroup, which are predominantly ex...
متن کاملThe Arabidopsis GPR1 Gene Negatively Affects Pollen Germination, Pollen Tube Growth, and Gametophyte Senescence
Genes essential for gametophyte development and fertilization have been identified and studied in detail; however, genes that fine-tune these processes are largely unknown. Here, we characterized an unknown Arabidopsis gene, GTP-BINDING PROTEIN RELATED1 (GPR1). GPR1 is specifically expressed in ovule, pollen, and pollen tube. Enhanced green fluorescent protein-tagged GPR1 localizes to both nucl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2012